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Abstract. The Monte Carlo and Langevin dynamical methods of simulating the thermo- 
dynamics of physical systems are compared by calculating relaxation times according to 
the two dynamics for a system which is analytically tractable, namely a single (planar) 
spin in a potential which has either a single minimum or two minima separated by a barrier. 
With no restriction on the maximum allowed spin reorientation per Monte Carlo step the 
Langevin method is faster than the Monte Carlo method for the single minimum potential. 
However a careful choice of restriction can make the Monte Carlo method as efficient as 
the Langevin method. For the double-well potential the Monte Carlo method with no 
restriction is the most efficient. One is forced to use a finite-time step size when numerically 
solving the Langevin equation and the departures this produces from the equilibrium 
Boltzmann distribution are studied. 

1. Introduction 

In recent years, computer simulation has provided physicists with a large amount of 
valuable information, especially in the field of statistical physics where exact solutions 
can only be found for a small number of systems. Most of these simulations are based 
on the Monte Carlo method. This involves setting up a Markovian process in which 
the state of a system is iteratively replaced by i new configuration at each step. The 
transition probabilities from one state to another are chosen in such a way that the 
process will give the canonical (Boltzmann) equilibrium distribution. Free energies 
and other static thermodynamical quantities can be obtained by averaging these 
variables over many steps (Muller-Krumbhaar and Binder 1973). 

The Monte Carlo method is by no means the only one used to simulate a statistical 
system. Other methods such as solution of the Langevin equation have also been 
suggested and used, both in the field of statistical physics (Bray and Moore 1982, 
Meakin et a1 1983) and in the field of particle physics (Parisi 1980, 1981, Drummond 
et a1 1982, Thomas 1984). The important point about these methods is that they all, 
in principle, have the same equilibrium distribution, namely the Boltzmann distribution, 
so any of them can be used as far as the computation of static thermodynamic variables 
is concerned. However, one must note that in order to eliminate the effects of the 
initial conditions, one needs to let the simulated system relax into equilibrium before 
the process of averaging is started. In other words, the first M steps must be omitted 
from the averaging. M is such that it should always be greater than T,/T,, where I ,  is 
the longest relaxation time of the system and T~ is the step time (the time between two 
steps). Obviously, the method which provides the smallest relaxation time per step 
time is more efficient in the sense that fewer steps are omitted and hence less 
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3 506 R Ettelaie and M A  Moore 

computational time is wasted. As0 the statistical error on the result obtained from a 
simulation is of order J M I J N  where N is the number of steps included in the 
averaging. Hence, in this respect the method with a smaller M (relaxation time per 
step time) can also be considered more efficient as it provides results with a higher 
accuracy for the same number of steps N. 

In the first part of this paper we have compared the Monte Carlo dynamic, governed 
by the master equation (Muller-Krumbhaar and Binder 1973), to the Langevin dynamic 
by calculating the relaxation times at low temperatures. In order to do so we first had 
to define the step time T ,  for the Monte Carlo case. This is chosen in such a way as 
to make the relaxation times of both dynamics equal in the high-temperature limit. In 
fact, the choice of T ,  does not affect the equilibrium distribution in the case of the 
Monte Carlo method. It simply defines the time scale for the process (Binder 1979). 
However, in the case of the Langevin method this is not so. As stated before both of 
the methods have the Boltzmann distribution as their steady state solutions. This is 
true in principle. But one must realise that when one is trying to solve a differential 
equation such as the Langevin equation on a computer, the differential equation has 
to be replaced by a recurrence relation. In other words, one replaces dx ld t  by AxlAt  
where A t  has a finite value. In doing so, a certain degree of error is introduced and 
instead of the Boltzmann distribution one gets a slightly different distribution as the 
steady state solution. The error is proportional to A t  (Parisi 1980). Here, A t  is just 
the step time 7,. Thus the amount of error which can be tolerated puts an upper limit 
on the size of the step time. This effect will be discussed in some detail in § 5 .  

The calculations are performed for a single classical planar spin moving in (1) a 
potential - h  cos 8 and (2) a potential D sin2 8. The first potential is a single-well 
potential and represents the coupling between the spin and a magnetic field. The 
second case is a double-well potential and can be regarded as an anisotropy field. It 
is found that the Langevin equation approach is superior in the first case. However, 
one can increase the efficiency of the Monte Carlo method by restricting the maximum 
allowed change in the angle at each step. The choice of maximum allowed change in 
the angle is critical and strongly affects the relaxation time. It is shown that with a 
good choice one can make the Monte Carlo method as efficient as the Langevin 
equation approach. In the second case, where a potential barrier separates two 
equilibrium spin orientations, the Monte Carlo method is the better of the two. In 
this case the greatest efficiency is obtained when no restrictions are imposed on the 
maximum allowed chan-- in the angle. The result is intuitively obvious. Because the 
calculations of the various relaxation times in the two dynamics can be performed 
analytically for this very simple system, we can for once establish quantitatively the 
superiority of one dynamic over another. Moreover we expect that the features revealed 
by these calculations will be true of more complex systems, such as interacting spins, 
where direct analytic calculations of the kind performed here will not be feasible. 

We have to point out that in certain special cases, for example when calculating 
the connected correlation functions in the regions where they are small, it is still 
advantageous to use the Langevin dynamic method (Parisi 1980, 1981). In some cases 
the Langevin method might even be the only reasonable method that one can use. For 
example if one is interested in dynamical processes themselves, as represented by 
time-dependent correlation functions, then one simply has to use the appropriate 
dynamical equations. For non-Ising spins, e.g. planar or Heisenberg spins, the Monte 
Carlo method never provides realistic dynamical equations. However, in certain 
situations, the Langevin equation may be realistic (Beton and Moore 1984). 
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In 0 2,  we describe our simple model in some detail and specify the two dynamics. 
In 0 3 we obtain the low-temperature behaviour according to the two dynamics for the 
single-well potential and discuss the effect of restricting the change in the angle for 
the Monte Carlo case. In 0 4 we repeat the process for the double-well potential. 

2. Models and dynamics 

We shall consider a single planar spin of unit length governed by either the ‘magnetic 
field’ Hamiltonian 

%‘(e) = - h  COS e, (1) 

or the ‘anisotropy’ Hamiltonian 

%‘(e) = D sin’ e. 
In ( l ) ,  6 is the angle between the direction of the field and that of the spin, and 
0 s 6 S 2.r. There is one ‘easy’ direction of the spin along 0 = 0, i.e. the potential has 
a single well. The double-well potential ( 2 )  is typical of uniaxial anisotropy and the 
easy directions are 0 = 0 and 0 = T. 

The Langevin equation for a planar spin is of the form 

d@/dt  = -a%’/ae +f( t ) ,  (3) 

where f ( t )  is a white-noise source generated by the coupling of the spin to its 
surroundings (a ‘heat bath’) with strength 

Using equation (3) one can derive an equation for the probability distribution P( 8, t ) .  
This is just the Fokker-Planck equation (Chandrasekhar 1943, Wang and Uhlenbeck 
1945), the eigenvalues of which would give us the relaxation times. The Fokker-Planck 
equation for a planar spin has the form 

kBT a’p/ae’+(ax/ae) aP/ae+(a’%’/ae’)P = aP/at. (5) 

It is easily seen that the equation has the Boltzmann distribution exp(-PH) as its 
steady state solution as expected. 

The Monte Carlo dynamic is described by the master equation (Muller-Krumbhaar 
and Binder 1973) 

w ( 0 ,  0 ’ )  specifies the transition rate from a state 0 to a state 0’ and from now on we 
will take it as being that specified by the Metropolis algorithm (Metropolis et a1 1953). 
That is 

This choice is made because the Metropolis (1953) algorithm is particularly simple to 
use on a computer and hence is the one most frequently used in numerical work. T~ 
appearing in (7) is the step time, in other words T;’ transitions are performed within 
the unit time. 
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In § 3 we shall solve equations ( 5 )  and ( 6 )  for the case of a single-well potential 
and compare the results. 

3. The solutions of the Langevin and master equations for the case of the single-well 
potential 

With a potential described by ( l ) ,  the Fokker-Planck equation ( 5 )  becomes 

kBT a2p/ae2+ h sin e ap /ae+  h COS ep = aP/at .  (8) 

In the high-temperature limit, h << kBT, one expects the behaviour of the system to be 
similar to that of a free spin with no magnetic field present. For this limit one can 
approximate equation (8)  by 

kBT a2P/a@’=aP/at (9) 

which can easily be solved to give 

P(0, t ) =  C [AA Sin(A/kBT)”’B+BA COS(A/~BT)’/’~]~-”‘.  
A 3 0  

The periodic boundary conditions P (  8, t )  = P (  0 + 2 ~ ,  t )  restricts the values of A to 
n2kBT, where n is an integer. It follows that the dominant (i.e. slowest) relaxation 
time is l/k,T and the steady state solution is a uniform distribution as expected for 
the high-temperature limit. The equation can also be solved in the low-temperature 
limit if one realises that in this limit, h >> kBT, the spin will nearly always be parallel 
to the field. That is, the probability of having a large 0 is very small. Using this fact 
we can approximate the potential by 

%’( e )  = -h cos 0 = -h(  1 -:e’) 

which leads to the following Fokker-Planck equation 

k,T a2p/ae2+ h e  aP/ae + hP = aP /a t  (10) 

which now has to satisfy the boundary condition P (  0, t )  + 0 as 0 + CO. The solution 
to equation (10) is of the form 

where f( 0)  has to satisfy 

a2f/d02 + (he/ kBT) af/M + [( h + A )/ kBT]f= 0. 

Using the transformations 

f ( e )  = 4 ( 0 )  exp(-hO2/2kBT) 

followed by 

0 = (2kBT/h)’/’x 

the equation can be transformed into Hermite’s equation 

a2+/ax2-2x a + / a ~ + ( 2 ~ / h ) 4  = o  
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which together with the boundary condition stated above restricts the eigenvalues to 

A = n h  n = 0 ,  1 , 2 , . . ,  

with corresponding eigenfunction 

#)(XI = Hfl(x) 

where H n ( x )  is the nth Hermite polynomial. Thus the solution to equation (10) becomes 
X 

P(8 ,  t )  = ( ~ ~ H , ( ( h / 2 k ~ T ) " ~ 8 )  exp(-h02/2kBT) exp(-nht) (11 )  
n = O  

with a dominant relaxation time 1/ h which, unlike the high-temperature limit, is 
independent of T. 

These results must be compared to the solutions of the master equation (6) in the 
same temperature limits. With a Hamiltonian described by (1) the transition prob- 
abilities (7) will become 

where p = l /kBT. Substituting (12) into (6) gives 

+ / e  

-lei 
-lei 

+ J (27TTS)-l p(e ' ,  t )  exp[ph(cos e-cos e y d e '  

+ J p(e ' ,  f)(27~7,)-~ de '+  p(w, t)(27T.rS)-' de'. (13) 
-77 Col 

The equation takes a relatively simple form in the high-temperature limit h<c kBT, 
since in this limit all the terms exp[ph(cos @'-cos e ) ]  tend to unity independently of 
the values of 8 and 8' and we get 

which can easily be solved: 

P(0,  t )  = (2r)- '+A(O) exp(-tT;'). (14) 

A( e )  is a periodic function of 6 determined by the initial conditions. From the above 
solution it can be seen that the steady state distribution is uniform as one expects, and 
the relaxation time is equal to the step time 7,. As mentioned earlier, the value of T ,  

does not affect the equilibrium distribution in the case of the Monte Carlo simulation. 
Hence by taking T,  = 1/ kB T, we can make the Langevin and the Monte Carlo dynamic 
consistent in the high-temperature limit. In this way we have also defined the time 
scale for the Monte Carlo method. 
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We have not been able to solve the master equation (13) directly in the low- 
temperature limit. However, a lower bound for the dominant relaxation time has been 
found using a variational method. To see how this can be done one writes equation 
(13) in the alternative form: 

i w  

min((2mS)-l, exp[ph(cos e”-cos e ) ]  

x(2mS)- l )  de” P( e’, t )  de’ 1 
Substituting a solution of the form f A (  e )  e-A’ into the above equation gives the integral 
equation 

with a kernel 

k(0 ,  e‘) = min((2mS)-’, exp[ph(cos 8 -cos I ~ ’ ) ] ( ~ T T , ) - ’ )  

+ w  

min((2mS)-’, exp[ph(cos O”-cos O ) ] ( ~ T T ~ ) - ’ )  de”. 

(16) 

The first eigenstate of equation (15) is already known since it is just the steady state 
solution with A = 0. The eigenfunction has the Boltzmann distribution form: 

fo( 0 )  = exp( h cos e/ kB T). 

If one could find a function which when multiplied into equation ( 1  5) puts it into a 
form where the kernel is symmetric in 0 and e’, then according to the Hilbert-Schmidt 
theory (Courant and Hilbert 1953), one knows that any two different eigenfunctions 
of this new equation are orthogonal and they form a complete set. Thus, it is possible 
to carry out a variational calculation for the second eigenvalue. 

The details of this calculation are given in appendix 1 and it is shown that in the 
low-temperature limit, ( h  >> kB T), the second eigenvalue is such that 

A 3 7;’(2k~ T/ T3 h )  ‘I2. 

With T~ = l / k B T  as before, the dominant relaxation time r, becomes 

Thus, comparing this result with that obtained for the Langevin method ( T ,  = 1/ h ) ,  it 
can be seen that in the low-temperature limit the Monte Carlo method specified by 
transition probabilities (12) (which imply no restriction on the maximum value of 
change in the angle in one step) is slower than Langevin dynamics for a single-well 
potential. In order to improve the Monte Carlo method, transition probabilities (12) 
have to be modified in such a way that they will limit the change in the angle to a 
certain value. For the best result this value must be chosen carefully to be a specific 
function of temperature. We argue below that A, the limit on the maximum change 
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in the angle, has to be proportional to T”’ if the smallest relaxation time is to be 
obtained. 

At first sight it might seem that the restriction imposed on the change in the angle 
will limit movement in phase space and thus would increase the relaxation time. 
However, this is not the case. Consider a spin in a state close to the bottom of the 
well and at low temperatures. The range of angles for which the energy would decrease 
would be a rather small proportion of the total angles which could be chosen for the 
next step if there is no restriction. This means the chance of accepting a move would 
be small and the system would remain in the same state for a large number of steps. 
This gives rise to a long relaxation time. Now, if one restricts the magnitude of change 
in the angle to be smaller than A, then the angles for which the energy would decrease 
will be a much larger proportion of the total angles which can be picked for the next 
step and should improve the relaxtion time. A good value for A has to ensure that on 
average the chance of accepting a move at each step has to be about half, but at the 
same time it must not be so small as to restrict the movement in phase space un- 
necessarily. From equipartition, the average magnitude of the angle 8 at low tem- 
peratures is approximately proportional to T”’, If A is approximately T” for n < 4 the 
value of A will be much larger than the average magnitude of 0 at low temperatures. In 
this case one expects the results to be similar to those of the case with no restriction. 
On the other hand, if one chooses n > f then A will be much smaller than the average 
value of 0 as temperature decreases, and this produces severe restriction on the 
movement in phase space which will give rise to a long relaxation time. Thus it follows 
that the best value for n should be 4. This ensures that the ratio of the average value of 
8 (or more precisely RMS value of e )  to A stays constant as temperature is varied. 
Choosing A = (ph)-’” the transition probabilities can be written as 

l e  - 8’1 > A 

e ‘ )  = = ( 2 ~ ~ , ) - ’  / e - e f l < A , s , z e < o  

l=O = ( 2 6 ~ ~ ) ~ ’  exp[ph(cos e‘-cos e)] le - 8’1 < A, s m  0. 
Carrying out a variational calculation similar to that already performed for the 

case with no restriction, gives a lower bound for the relaxation time =r,= l/kBT. 
Although this result and the result (17) are both only lower bounds, we expect the 
actual relaxation times to have the same temperature dependence. Comparing the two 
Monte Carlo methods one can see that the relaxation time at the low-temperature limit 
has improved by imposing a restriction on the value of the maximum allowed change 
in the angle that can take place in one step. However, it is still longer than the relaxation 
time for the Langevin method. At first this might suggest that the Langevin method 
is more efficient than the Monte Carlo case. However, the efficiency of the method is 
not determined only by its relaxation time but also by the step time, in other words it 
is determined by r r / r , .  As will be seen later it follows that the Monte Carlo method 
with the restriction can be made as efficient as the Langevin method. 

4. ‘Eae case of a double-well potential 

The results obtained in 0 3 might not be true in general if one is dealing with potentials 
more complicated than that given by (1) .  To see why this might be so, consider a 
double-well potential such as that described by (2). The important difference between 
this and a single-well potential such as ( 1 )  is the presence of a barrier in (2).  This 
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means that in the case of the Langevin method, the spin needs to gain sufficient energy 
from its surroundings in order to make a transition from one well into the other. The 
white noise f( t ) ,  representing the interaction of spin with its surroundings in equation 
(3), has a strength which decreases as temperature is decreased. Therefore, the 
probability of obtaining sufficient energy to overcome the barrier becomes very small 
at low temperatures and large barrier heights, which leads to very long relaxation times 
as compared to the relaxation times for a single-well potential. 

Unlike the Langevin method, the relaxation times for a single and double-well 
potential are not expected to be very different in the case of the Monte Carlo method 
with no restriction. If the spin is in a state 0 and a new state 0’ is chosen in the next 
step, a transition from 0 to 0’ is definitely made if that involves a decrease in energy, 
otherwise, it is made with a probability exp( - P S E ) .  This is true whether 0 and 0’ are 
states within the same well or within different ones. Thus, even at low temperatures 
and large barrier heights, transitions from one well into another can easily take place. 

We shall support the above view by calculating the relaxation times for both 
dynamics. The Monte Carlo method with restriction is not discussed as it is unlikely 
that this improves the efficiency of the method as far as potentials with barriers in 
them are concerned. 

Substituting ( 2 )  into the Fokker-Planck equation ( 5 ) ,  we obtain 

aP/at = k,T a2P/a02+  D sin 2 0  aP/aO+(2D cos 20)P. (18) 

At this stage one can use Kramer’s method (Chandrasekhar 1943) to calculate the 
relaxation time. This method is based on the assumption that the equilibrium is 
established much faster within the individual wells compared to the time taken for it 
to be established between the two wells. Kumar and Dattagupta (1983) have presented 
an argument justifying the above view. Brown (1963) has obtained the relaxation time 
for the more complicated case of a Heisenberg spin in a double-well potential. Our 
calculations are very similar to those of Brown and for that reason we shall omit the 
detail and simply quote the answer. The largest eigenvalue determining the dominant 
relaxation time is given by 

where 

I*= ( ~ . ~ / P v ” ( T ) ) ~ / ~  exp(-P(.r)). ( 2 0 c )  

T,= A-’-exp(pD). ( 2 1 )  

Using potential ( 2 )  and results (19)-(20), we have a relaxation time 

One can also get an estimate of the relaxation time for the Monte Carlo case with 
potential (2). The calculations are given in appendix 2 and show that the relaxation 
time required for the equilibrium to be achieved between two wells is 

7,={(.rr/3D)”*7s. ( 2 2 )  
Defining T~ = l / k B T  as we have done all along and comparing ( 2 2 )  with (21) clearly 
proves the point made earlier in this section. That is in the temperature limit, D >> k, T, 
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and in the presence of a barrier in the potential, it is the Monte Carlo method which 
is faster than the Langevin method. In fact, the presence of the exponential factor in 
(21) ensures that the Monte Carlo method is very much better than the Langevin 
method for this case. 

5. The effect of the step time on the Langevin method 

As mentioned in the introduction, the Langevin equation (3) has to be replaced by a 
recurrence relation before it can be solved on a computer. The recurrence relation 
has a form 

e n + ,  = e n  -(aH/aelo=on -fn) A f  (23 1 
where enf l  is the new value of e. 8, is the value of 0 at the nth step and the time is 
discretised in steps of At, i.e. t = n At. Following Bray and Moore (1982) we have 
assumed that the random noise f, A? has a Gaussian distribution with zero mean and 
variance 2AtkBT. Also it is assumed that values of f, for two different values of n are 
independent. Using the above distribution for f, Ar it is obvious that f, itself has to 
have a Gaussian distribution of the form 

The probability distribution of e,+, depends on both the distribution of 0, and 
that of f,. It is given by 

Using the integral representation of a 6 function, equation (25) becomes 

x exp( - A tf2,/4 kB T )  d fn  de, d u l  2.ir(4.rrkB T) (26) 

Now, the integral in f, followed by the integral in U can be evaluated to give 

In order to simplify the calculation, from now on we shall take H ( 0 )  = t h e 2 .  This 
is a reasonable assumption to make if one is dealing with any single-well potential in 
the low-temperature limit. One can now proceed to derive the Fokker-Planck equation 
from (27). In the limit At  + 0 the equation would be the same as (10) with a Boltzmann 
distribution as its steady state solution. However, if Af is finite then some extra terms 
of order At,  (At)2 ,  etc would appear in the equation, slightly perturbing the steady 
state solution away from the Boltzmann distribution. In order to calculate this new 
steady state solution, we have found it easier to actually solve (27) directly rather than 
deriving the Fokker-Planck equation with the extra terms and then trying to solve this. 
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Substituting a trial solution of the form 

into (27) and carrying out the integration in x, gives 

where a is given by 

(Y = 1 - h At. 

If Pl(O,) as defined by (28) is to be a steady state solution of the equation (27) then 
one requires distribution (29) to have the same form as (28), i.e. 

- A ( ~ ~ + A ) - ~ = - A .  

Thus 

A = l - a 2  

= 2h A t  - h2(At)2. (30) 

Substituting (30) into (28)  one has the steady state solution of equation (27): 

2h A t  - h2(At)2)1’2 ( h2 Ate2 )  exp (-hOz) - 
exp ~ ( 4?rkBTAt 4 k ~  T 2 k ~ T  ‘ 

P ( e )  = 

It can be seen that this solution is not the Boltzmann distribution if A t  is finite. 
However, if the limit A t  + 0 is taken then one obtains 

which is just the expected Boltzmann distribution. Only retaining the terms up to and 
including At, equation (31) can be written as 

The first term in the above expression gives distribution (32) and the next two terms 
are the leading extra terms that appear due to A t  being finite. With the help of (31) 
and (32) one can also calculate the error produced in a given quantity of interest. 
For example consider (0’). According to (31) the value of this quantity would be 
(kBT/h) ( l  - h At/2)-’ whereas the true value given by distribution (32) is k,T/h. 
Hence, a relative error of i h  At, (up to first order in A t ) ,  has been introduced into the 
quantity ( 0 2 ) .  Note that this type of error is present in addition to the random error 
which arises as a result of the averaging process over the steps and also the error due 
to the influence of the initial starting state (errors also present in the Monte Carlo 
method). The random statistical error and the influence of the initial condition can 
both be reduced if one averages over larger and larger numbers of steps. But the error 
introduced by discretising the time in the Langevin equation is not reduced by increasing 
the number of steps. This must be considered as a disadvantage of the Langevin 
method compared to the Monte Carlo method. The way to reduce this error is to 
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introduce extra terms into the Langevin equation as has been suggested by Parisi 
(l980), or to use a more refined expression for the derivative (Drummond et al 1982). 
One might think that a similar kind of error must also exist in the Monte Carlo method. 
After all the time in the master equation ( 7 )  is continuous whereas the Monte Carlo 
steps in a computer are discrete. However, this is not so and as long as the transition 
probabilities are defined such that they satisfy the detailed balance equation, the system 
will approach the correct equilibrium distribution (Muller-Krumbhaar and Binder 
1973). 

In the last two sections we compared various relaxation times for both the Langevin 
and  the Monte Carlo method but little attention was paid to the effect of step time. 
With the aid of the calculations made in this section we are in a better position to 
compare the two methods, at least for the case of a single well, by taking the step time 
into account. To d o  so, first we need to have criteria for choosing At  in the Langevin 
method. We assume that the relative error introduced in (e ’ )  due to discretised time 
must be equal to less than 5. That requirement leads to the following restriction on 
the value of A t  

A t  s 251 h. (34) 
In § 3 the dominant relaxation time for the Langevin case and a single-well potential 
was shown to be l / h .  Assuming that this is so even for finite but small values of At ,  
then the number of steps required for the system to get to equilibrium would be given 
by 

M = -  Tr 

A t  

l / h  1 
251 h - 25’  

- (35) 

Thus, in order to reduce the error due to discretising the time one has to have a smaller 
step time which simply means that the system will require a greater number of steps 
to get to the equilibrium. For the Monte Carlo case without restriction M is given by 

M = rr/ r, 

= 4( .rr3h/2 kB T ) ‘ / *  

where rr is the relaxation time and was shown to have a lower bound ofir.,( .rr3h/2kBT)”* 
in § 3. Comparing (35) and  (36), one can see that the number of steps required for 
achieving equilibrium in the Monte Carlo case with no restriction is going to be larger 
than that for the Langevin method, at very low temperatures, due to the T-‘/’ 
dependence in (36). However, the temperature at  which this happens decreases with 
decreasing 6. 

For the Monte Carlo method with restriction r, is proportional to rs=  ( k B T ) - ’ .  
One can immediately see that M becomes independent of temperature in this case, 
similar to that for the Langevin method. 

A similar calculation for double-well potential could also be done if one could 
derive an equation like ( 2 7 )  and obtain the solution to it. We have found this 
to be a rather difficult task. Whatever the result might be though, we feel that the 
exponential factor exp( D/ k ,  T )  appearing in the relaxation for the spin in a double-well 
potential in the Langevin case, is going to ensure that the Monte Carlo method will 
be the more efficient of the two in the low-temperature limit. 
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6. Summary and conclusion 

In order to reduce the error caused by the influence of the initial configuration when 
the equilibrium properties of a system are being studied using computer simulation, 
one has to omit the first few steps from the averaging process. The number of steps 
to be omitted. depends directly on the longest relaxation time of the system. 

Langevin and Monte Carlo dynamics of a single planar spin were compared by 
solving the Langevin and the master equation in the low-temperature limit in order to 
see which had the smaller longest relaxation time. The time scale for the Monte Carlo 
method is defined by having 7, (step size) equal to k,T It is shown that this choice 
makes the two methods consistent in the high-temperature limit. 

It was found that the spin interacting with a single-well potential has a relaxation 
time independent of the temperature, in the low-temperature limit, when the Langevin 
dynamic is considered. For the Monte Carlo method without any restriction on the 
maximum allowed change in the angles, a variational calculation gave a lower bound 
which was proportional to T-3'2 for the relaxation time in the same temperature limit. 
These results show that the Langevin method is faster when one is dealing with 
single-well potentials in low-temperature limits. The Monte Carlo method could be 
improved by ensuring that the change in the angle at each step is not greater than a 
certain upper limit. It was argued that for the best result this upper limit had to be 
of order ( P h ) - ' I 2 .  In this case a variational calculation gave a lower bound proportional 
to T-' for the relaxation time in the low-temperature limit. 

One can make a better comparison between the two methods if one also takes into 
account the effect of the step size, i.e. calculate the number of steps required for the 
system to reach equilibrium for each of the two methods above. For both the Monte 
Carlo case with restriction and the Langevin method, this is independent of temperature. 
However, it was shown that for a finite step size ( A t ) ,  the equilibrium distribution 
deviated from the Boltzmann distribution in the case of the Langevin method. This 
introduced a relative error of the order i h  A t  in the quantity (6'). Thus in order to 
reduce this error one has to make A t  as small as possible. This means a larger number 
of steps (which is equal to relaxation time divided by the step size), is required for 
the equilibrium to be achieved. Thus it appears that unless there is a need to compute 
correlation functions (Parisi 1980) or explicit time dependence (Bray and Moore 1982) 
the Monte Carlo method is the method of choice. 

When a double-well potential was considered it was found that the relaxation time 
for the Langevin case varied as exp(D/ k B T )  as T +  0, D being the height of the barrier 
in the potential. For the Monte Carlo method (with no restriction) the relaxation time 
had the same temperature dependence as the single potential case, that is T - 3 / 2 .  Thus 
introduction of a barrier into the potential causes the Langevin dynamic to become 
much slower but leaves the relaxation time for the Monte Carlo method almost 
unchanged. These results clearly show that for any potential with one or more barriers 
in it the Monte Carlo method is the more efficient of the two. 
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Appendix 1 

In this appendix we present the details of the variational calculations which lead to 
equation (17). Multiplying both sides of equation (15)  by a function exp (-$h COS e)  
and defining 

g A ( e )  =fA(e)  exp(-fPh cos e) 
gives 

- A & ( @ ) =  J r<(e, e‘) exp(-iph cos e)  exp(+tph cos e ’ ) g , ( e f )  (Al.1) 

where K ( 0 ,  e’) is given by (16). Equation (Al.1) is a new integral equation with a 
kernel K ( 0 ,  e’) exp(-fph cos e) exp($h cos@) which is now symmetric in 6 and 8’. 
Thus, according to the Hilbert-Schmidt theory its eigenfunctions are orthogonal. The 
first eigenstate is known. This is 

+n 

-77 

go( e )  =fo( e) exp( - i p h  COS e)  = exp($h COS e). 
According to the variational procedure if g ,  ( e )  is any arbitrary function orthogonal 
to g o ( @ ) ,  then 

+Tr +77 

g , ( e ) K ( e ,  e’) exp(-$h COS e) exp(+$h COS e ’ )g , ( e ’ )  d e ’ d e  

(A1.2) 

where A is the first non-zero eigenvalue. Trying 

g,( e )  = exp($h COS e)  sin e 
which is orthogonal to the ground state g o ( 8 )  and with K ( 8 ,  e‘) given by (16), one 
can evaluate the integral in 8‘ to give 

A S  

In the low-temperature limit, h >> k,T, we have 

(27TT,)-’ 1:; sin’ 6 exp(ph cos 8)(2161+2 dO”exp[ph(cos  cos e)]) d e  
1:; d e  exp(ph cos e) sin2 8 

sin’ 0 exp(ph cos e) dB = 2 8’ exp(ph) exp(-$he*) dB l: 
= ( 2 7 ~ ) ” ~  exp( p h  ) ( p h  )-3’2 

and 

/ e (  sin’ 0 exp(ph COS e)  d 6 ~ 2  e3 exp(ph) exp(-$phe’) j: 
= 4 exp(ph)(ph)-*. 

To evaluate 

1-y (exp(ph cos 0 )  sin’ 8 exp[ph(cos W’-cos e)] de”  
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the substitution 6” = 161 + a is made which leads to 

2 1; (exp ( p h  cos 6) sin’ 0 exp[ph(coslBl cos a -cos  6-sin/6/ sin a ) ] d a  d 6  1 
- 2  {: d6 exp(ph cos 6 )  sin2 6 d a  exp[ph(-4a2 cosl6l- a sinl6l)l 

= 2 lox d6 exp(ph) e~p(--$h6~)6’(ph6)-’ = 2 e ~ p ( p h ) ( p h ) - ~ .  

We have treated the limit 7~ - 6 as oc when evaluating the integral in CY which is not 
a good approximation if 6 = 7 ~ .  However, the term exp(ph cos 6) sin’ 6 which appears 
in the integral ensures that the contribution from the region 6 - 7 ~  towards the final 
answer is negligible in the low-temperature limit. Hence, we have 

A 3 ~ ; ~ ( 2 k ~ T / . r r ~ h ) ” * .  

Appendix 2 

In this appendix we calculate the relaxation time required for the equilibrium to be 
achieved between two wells, assuming that equilibrium has already been established 
within each well. The transition probabilities are those governed by the Metropolis 
algorithm (7). The double-well potential (2) has one minima at 0 = 0 and one at 6 = 7~ 

(or - 7 ~ )  and maxima at 6 = -+T and 6 = $ 7 ~ .  The probability of being in the well about 
6 = 0 is given by 

+ H / 2  t r r / 2  

P ( 0 )  exp[-P( - V(0))l L2 P( e )  d6 = 

- I ,P(O) exp(PV(0)) (A2.1) 

where P ( 0 )  is the value of the probability distribution at 6 = 0 and we have assumed 
that P ( 6 )  is given by the Boltzmann distribution within the well. II is given by 

zI = (27r /pV(0) )”’  exp(-pV(O)). (A2.2) 

In a similar way, the probability of being in the well about 6 = 7~ (or - T )  is given by 

n 1  = [ - H I 2  

- H / 2  

P( - 7 ~ )  exp[-p( V( 6) - V( -..))I d 6  
n2 = I_, 

P(.rr) exp[-P( - V ( 7 ~ ) ) l  do 
+ L2 

1 2 P ( r )  exp(PV(.rr)). (A2.3) 

Note that due to periodic boundary conditions P(T) = P ( - T ) .  Z2 is defined as 

I’ = ( 2 ~ / p v ” (  7 ~ ) ) ” ’  exp( -pv( 7 ~ ) ) .  (A2.4) 

Now we need to calculate the total transition rate from the first well into the second 
one and vice uersa. We shall refer to these as w I 2  and w 2 1  respectively. In order to 
obtain w 1 2  we have to get the sum of the transitions made from all the states in the 
first well into a particular state in the second well and then we have to sum this over 
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all the states in the second well. This is just the integral 

w12 = Ie2== 1 el = ~ / 2  

P( & ) w (  e,, 8,) de1 de2 
B z = r r / 2  e , = - r r / 2  

e 2 = - r r / 2  e , = ~ / 2  

+ l e 2 = - =  5,,-.,,2 P m w ( e l ,  0,) do, de2. 

With P(8,) = P ( 0 )  exp[-P( V(8,)- V(O))] and w ( 6 , ,  6,) given by (7),  each of the above 
integrals breaks into more integrals. These can quite easily be evaluated to give 

w I 2  = [ ~ P ( O ) / ~ V " ( O ) ] T ; '  (A2.5) 

and in a similar way 

w 2 ,  = [ 8 P ( v ) / P V " ( 7 ~ ) ] 7 ; ~ .  (A2.6) 

Now n,, the probability of being in the first well satisfies the simple equation 

r i ,  = U, ,  - 0 1 2 .  (A2.7) 

Also we have n,  = 1 - n , .  Thus by expressing w 2 ]  and w i z  both in terms of n , ,  we will 
have a differential equation for n ,  which can be solved to give us the relaxation time 
required. To do so substitute (A2.5) and (A2.6) into (A2.7): 

i~ = 4(ph)-'7r1( P (  7 T )  - P ( 0 ) )  

where we have also used the fact that V ( O ) =  V"(T) = 2 0  for the potential 
0 sin2 8. Now using (A2.1) and (A2.3) we have 

P ( T )  = n2 exp(-PV(r))Z;' = n21;' 

P ( 0 )  = n, exp(-pV(O))I;'= n,Z; '  

which when substituted into (A2.8) gives 

li, = 8 ( p V ' ( 0 ) ) - ' 7 ~ ' [ (  1 - n , ) Z ; '  - n , Z ; ' ] .  

Solving the above differential equation gives a relaxation time 

7, = [4( pD)- 'T;  (1;' + 1; ')I-'. 
With I, and Z2 defined by (A2.2) and (A2.4) this becomes 
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